• @There1snospoon7491@lemmy.world
      link
      fedilink
      English
      4411 months ago

      Iirc (and as an extreme novice) superconductors allow for transfer of incredible amounts of energy with little to no loss, but require extreme supercooling to do so. A superconductor that doesn’t need that cooling would allow super-efficient energy transfer with very little to no cooling needed, meaning the overhead costs are reduced dramatically.

      This would be a wonder technology if proven to be true, but my understanding is most of the rest of the world is highly skeptical at the moment. It’s like having your cake and eating it too.

      • @nilloc@discuss.tchncs.de
        link
        fedilink
        English
        1111 months ago

        This would be a wonder technology if proven to be true, but my understanding is most of the rest of the world is highly skeptical at the moment. It’s like having your cake and eating it too.

        I’d say it’s more like simulating the best tasting cake ever in a computer, then telling everyone else to go bake it.

        Hopefully someone can figure out a process to create the material in real life (then hopefully it’s durable and eventually economical to produce).

        • aebrer
          link
          fedilink
          911 months ago

          Afaik they did build it in real life, and the paper in fact is about the process for manufacturing it, not just about the properties or simulations.

          People have replicated the simulations so far, but are still working on replicating the manufacturing process, as it has low yeild and some variability apparently

          • Maximilious
            link
            fedilink
            411 months ago

            The problem with that paper as I understand it is that the writer was recently outed for making many false claims in his research.

            • aebrer
              link
              fedilink
              411 months ago

              Interesting I hadn’t seen that. Do you have a source I could check out? There’s six authors so it’d help figure out what you’re referring to

        • aebrer
          link
          fedilink
          4
          edit-2
          11 months ago

          Maybe (or at least an albecuire drive)

          Maybe

          Probably not

          Also some more “basic” things like cheap MRI without requiring helium (which we are running out of), cheap and easy magnetic levitation (more available high-speed trains)

          • @SkybreakerEngineer@lemmy.world
            link
            fedilink
            English
            611 months ago

            Last I checked, alcubierre drive still requires negative mass, which is not a thing. Time travel and artificial gravity are still theoretically impossible.

            • aebrer
              link
              fedilink
              311 months ago

              Yeah artificial gravity I was thinking more along the lines of faking it via magnetism.

              Albecuire drive I was just wrong about, you’re right it’s not a maybe it’s a nearly 100% no lol.

              Sorry just excited.

          • @WarmSoda@lemm.ee
            cake
            link
            fedilink
            English
            111 months ago

            Albecuire drive is basically science fiction. If it’s actually possible we won’t be seeing it any time soon unless we find a crashed ship on Mars or something.

        • @skillissuer@lemmy.world
          link
          fedilink
          English
          211 months ago

          no

          no

          no

          this thing would enable very strong superconducting magnets to work without cryogenic cooling. so, portable MRIs, better maglev, maybe perhaps easier fusion.

          another interesting property is that resistance is zero. that means that you can transfer energy losslessly, saving some 10% of it this way. or you can make coils of this thing and charge/discharge them as needed, but this time without cooling: https://en.wikipedia.org/wiki/Superconducting_magnetic_energy_storage

    • @orcaA
      link
      English
      1711 months ago
      • Much less heat output
      • Much less power usage because the components traditionally used to cool are not required (which makes it much cheaper to run)
      • Lossless power transfer which is much more efficient
    • @asdfasdfasdf@lemmy.world
      link
      fedilink
      English
      1711 months ago

      Way more efficiency, almost no heat generated. Quantum computers in your pocket. No need for fans in computers anymore, even for supercomputers. Way more efficiency at sending electricity long distances. Things like maglev trains and fusion reactors and MRI machines can use superconductors without needing to keep the temp at negative 450 F. Cheap MRIs mean accessible, inexpensive MRIs for all. The list goes on and on.

    • cassetti
      link
      fedilink
      1611 months ago

      Yep. You know how hot your phone gets when charging? Or how hot a playstation gets when gaming for hours at a time?

      That’s due to heat-loss generated by the circuits. Superconductors would allow them to run much cooler generating essentially zero heat. Which means they can run more efficiently or faster without the need for larger heatsinks or complicated expensive cooling systems.

      • @Djeikup@lemmy.world
        link
        fedilink
        English
        811 months ago

        Yes, because less heat. So we can crank it higher with no drawbacks. (Simplified reasoning I dont know a lot about circuit boards)

      • @skillissuer@lemmy.world
        link
        fedilink
        English
        111 months ago

        nah, you get there by using better materials in semiconductors manufacturing and more importantly better designs overall